
A
.

Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems

RObyll It.]J~lt~”

Jet Propulsion I,aboratory
California Institute of ~’cch]lology

l’adcna, CA 91109

April ’20, 1993

A b s t r a c t

11’his paper analyzes tllc root causes of safety-rclatccl software errors in safety -
critical, cmbcclclccl systems. ~’hc results show that software errors iclcntificcl as po-
tentially hazardous to the system tend to be produc.cd by different error mcchanislns
than non-safety-related software crrom. Safety-related software errors arc SIIOWII to
arise]nost COImnOI~ly from (1) discrepancies Lctwccn the docu]nc Ilted requirclncnts
specifications and the rcquircmcnts nccdcd for correct functioning of the systcln and
(2) misunderstandings of t})c software’s interface with the rest, of the system. ‘1’he
paper uses these results to identify methods by which requirements errors call bc prc-
vented. ‘1’hc goal is to reduce safety-related software errors and to enhance the safety
of con] Idcx, cmt)cddcd systems.

1. Introduction

T]lis paper examines 3S7 software errors u)lcovcrcc] during integration and systcm testing
of two spacecraft, Voyager anti Galileo. A software error is dcfincxl to be a software-rclatccl
discrepancy between a computccl, olxcrvcd, or rncasurcd value or co]ldition and tile true,
spccificd, or thcorctical]y correct va]uc or condition [6]. ltacll of these software errors was
docurncntcd at the time of cliscovcry by a form clcscribing the probleIn or failure. ‘1’l~c form
also rccordcd the subsequent analysis and the corrective actions taken.

As part of the standard ~)roccclure for c.orrccting each reported software error, the failure

effect of each is classified as negligible, significant, or catastrophic. Those classified as signif-
icant or catastrophic arc investigated by a systeIns safety analyst as representing potential
safct y hazards [1 3]. I{’or this stucly the 74 software errors on Voyager and 121 software errors

● Author’s mailing address is Dept. of Computer Science, Iowa State University, Ames, IA 50011. ‘lllc
research described in this paper was carried out by the Jet l’repulsion I,aboratory, California Institute of
‘lkchnology, under a co]ltract with NASA.

1

011 Galileo docu]ncntcd as having potclltial]y significant or catastrophic dfcds arc classified
as safety-mlatcd.

‘J’]Ic sljacccrafts’ softwaIc is safety- critical in that it Inonitors and COIltI’O]S coln~joncxlt,s
t]lat can bc involved in hazardous systcrn behavior [] I]. ‘1’]]c software must CXCCULC in a
systc]Il co]ltcxt without contributing unacc.c~jtable risk.

ltacll spacecraft involves cmbccldccl software distributed on several different flight conlput-
crs. Voyager has roughly 18,000 lines of source code; Galileo has over 22,000 [1 8]. l;mbcclclcd
software is software that rul)s 011 a coInl)utcr systcm that is iIltcgral to a larger systcnl wlIosc

l)rjmary ~)urposc is not computational [G]. ~’hc software on Lotll spacecraft is highly inter-
a c t i v e iI) tcrIns of tllc dcgrcc of Inessagc-passil)g aInoll F; s y s t e m cornponc]lts, t]lc IICCC{ to
rcspolld in real-tilnc to Inorlitoring of tllc l]arclwarc and crlvironlncllt, and tllc conll)lcx tirn-
i]lg issues among parts of the systcm, ‘J’hc software dcvclopmcnt for each spacecraft involvccl
lnultiplc teams working for a })criocl of years.

‘J’hc ~)urposc of this paper is to idclltify tile cxtcrlt and ways in w}licll tllc cause/cflcct
rclatiol]slli~)s of safety-rclatccl software errors cliffcr froIn tlic cause/cfTcct rclatiolls]lips of
lloI]-safety-related software errors. l)rcliminary results were reported in [1 4]. lr) particu-
lar, tllc analysis shows that errors in idcIltifyiIlg or urlclcrstallding functioIlal and illtcrfacc
l’Cq UireIncIlts frcqumltly lead to safety-rc]atcd software errors. ‘1’his clistinctioIl is used to

idmltify methods by which the comnIoIl causes of safety-rc]atcd software errors can bc tar-
geted during dcwclopIncnt. ‘l)hc goal is to ilnprove systcIn safety by llIlclclstallclillg ancl,
w}lcrc J)ossiblc, rmnovil]g tllc preva]cllt sources of safety-related softlvarc errors.

11. Methodology

‘J’lIc study dcsc,ribcd here C.]laractcrizcs the root causes of the safety-rclatccl software errors
cliscovcred during integration ancl systmn testing. ‘1’hc rccc]lt work by Nakajo and KuInc on
software error callsc/effect Ic]ationsl]ips Offers an al)propriatc framework for classifyixig tllc
software errors [] 6]. ‘l’hcir work is cxtcrldcd]lCIC to account for t]lc additional coInplcxitim

operative in large, safety-critical, cmbccldcd systc]ns with cvo]ving rcquircmc]lts driven by
lla,rdw’arc and environmental issues.

As will bc seen in Section IV, previous studies of tllc causes of software errors have
dealt priII}arily wit]] fairly siInp]c, Ilc)I1-cI1lt)ccl(ic(] systmns in falni]iar applicat ion domains.
ILccluircrllcnts s~)ccificatioxls in these studies gcncral]y }lavc been assu]nccl to bc correct, aIld
safety issues ha.vc Ilot IICCII disting~lis]lcd from progranl correctness. ‘1’he work prcscntcd
}lerc illstcad builds 011 that ill [1 G] to allalyzc soft~varc errors in safety-critical, c]nbcdclccl
systems with developing rcquircrnmlts.

Nakajo and Kumc’s classification scllc]nc allalyzcs tllrcc poillts ill t}lc pat]] from a software
error backwards to its sources. ‘1’}lis al)r)roacll allows c.lassific,ation not only of tllc doculI)cntcd
software error (called the program fault), Lut also of the earlier hu]nan error (tllc root cause,
e.g., a misundcrstandil]g of an illtcrfacc specification), and, before that, of tllc process flaws
that colltributc to t}lc likelihood of the error’s occurrence (c.g., inadequate coInrnunication
bctwccIl systems cnginccring and software dcve]opIncI~t tcaIns).

‘J’hc classification schcmc thus]cads backwards in time from the cvidcrlt software error
to all analysis of the root cause (Ilsua]ly a coIIlrnuI-licatioIl error or an error in rccogIliziIlg or

2

dc]J]oyiIlg rcquirc]nc]lts), to an analysis of tllc software dcvclo~jnlcxlt]JIOCCSs. 1 ~y coIIl]JarinE;

common error mechanisms for the software errors idcntificcl as ~)otclltially h.wardous with
tllosc of the otllcr software errors, the prcvalcl]t root causes of tllc safety-related errors arc
isolated. ‘1’he classification of the sources of error thcll is applied here tc) dctcrminc coun-
tcrmcasurcs which may prevent similar error occurrences in other safety-critical, cInbccldcd
systclns. ‘1’his paper thus uses the classification schcInc to asscxnb]c an error l)rofilc of safcty-
rclatccl software errors and to iclcntify dcvcloplncnt methods by which tl)csc sources of error
can bc control] cd.

11”1. Analysis of Safety-Relateci Software Errors

A. Overview of Classification Scheme

An overview of the classification schcmc follows, acljustcd to the needs of safety-critical,
cxnbccldccl software. Scc [16] for aclclitiona] clcta.ils 011 how errors arc categorized. A]~ ongo-
illg, multi-project investigation will adclrcss the issue of repeatability (CIO difi’crcllt allalysts
classify a givcll error in the same way?).

● }’rogra.m Faults (1)oc.ulnclltccl Software]’;rrc)rs)

A. IIltcrna] I’aults (e.g., syIltax)

~~.]ntcrfacc l“aults (interactions with other’ systcm components, such as transfer of
data or control)

C. l“unctional I’aults (o~)crating f a u l t s : oInissioIl or unnecessary operations; collcli -
tional faults: incorrect condition or limit values; behavioral faults: iIlcorrcct Lc-
llavior, IIot coI]forl]]iIlg to rccluirclncnts)

● IIuman]trrors (]Loot Causes)

A. Coding or Ec]iting ltrrors

131.

}12.

Cl.

C 2 .

Comtnunication l’;rrors Wit})in a “1’cam (ll)istlllclclstallc{il)g software illtcrfacc sl)cc-
ifications)

CollllilLIIlicatiol~ l~;rrors 1 lctwccn ‘J’cams (ll]is~l]lclcrstanclixlg llardwarc illtcrfacc spec-
ifications or other tcaln)s software spccificatiolls)

ICrrors in ILccogllizing l{cquircrncl]ts (I~lis~lllclclstal]cliIlg spccificaticj]ls or ~)roblcln
domain)

Errors in l)cploying lkquircmcnts (})roblclns illlplcnlclltillg or translatillg rccluirc-
lncllts intc) a clcsig]l)

● l’roccss k’laws (] ’’laws in Contrc)l of Systcm Complexity + lnadcquacics in ~/OII”lIllUIli”
cation or Dcvclopmcnt Methods)

A. lnadcquatc Code IIlspcctioIl aIlcl Testing hfcthocls

3

111.

112.

c1 .

C 2 .

inadequate lntczfacc Specifications +-]naclcquatc Communication (among
ware clevclopcm)

lnac]cquatc lnterfacc Spccifica.tioIls -{ lnadccluat,c CoxllrIlllI-licatioIl (Lctlvcwn
ware ZUIC1 harc]warc dcvclopcm)

}{cquircrncnts Not]dcntificcl or Undcmtoocl + lncomplctc l)ocumcll tation

ltcquircmcnts Not lclcntificd or Unclcrstood -I- lnaclcquatc l)csign

soft-

soft-

Clcarly, the attribution of a kcy hunlaIl error ancl a kcy process flaw to each software
error oversimplifies tllc cause/effect rclatioIls}li]). Ilo\vcvcr, the idcIltification of these factors
allows the characterization of safety-rclatcc{ software errors in a way that relates fcaturcx of
tile clcvclo~)mcni]jroccss and of the systcxn unclcr clcvclopmcnt to the safety conscqucnccs
of tllosc features. Similarly tile association of each software error with a IIuma]l error, while
uI]rcalistic (in what sense is a failure to prcc]ict clctails of system behavior all error?), allows
a useful association bctwccIl human factors (SUC1l as IIlisLllldcrstaIlcliIlg tllc rccluircIncIlts or
tllc underlying physical realities) and tllcir safety -rclatccl coIIscqucnccs.

Il. l’rogram Faults

‘1’able 1 (SCC A~Jpclldix) shows the proportion and number (in parcnthcscs) of soft~varc errors
ill the three main catc:;orics of lntcrl]al]Faults, lntcrfacc l“aults, ancl Y’unctic)nal IJault,s fo r
Lotll spacecraft. 2111C rigllt-hancl columIIs proviclc the salnc illforlliation for oIlly tllc safety -
rclatcc{ software errors.

Safety-rclatccl software errors account for 55% of the total software errors for Voyager
a]ld f18Y0 of the total software errors for Galileo cliscovcrccl ciurillg illtcgratioll ancl systcln
testing.

l“cw intcrnul faults (e.g., cocliI)g errors iIltcrrlal to a software moclu]c) were uncovcrcd
during integration and systcrn testing. An cxaInination of software errors fouIlcl later during
o])crations also shows fcw intcrIlal errors. lt appears that these coding errors arc Lcing
clctcctcd and corrcctccl before system tcstiIlg begins. ‘1’hcy thus arc not discusscxl further in
this papcy.

At t]lc high lCVC1 of detail in q’able 1, safety-related aIlcl non-safety-related software errors
display silni]ar proportions of intcrfacc and functional faults. Functional faults (operating,
conclitiona], or behavioral discre}>a]~cics with the functional rcquircmcnts) arc the rllost com-
mon lciI1cl of software error.

‘1’aLle 2 examines tllc prccloIniIIaIlt ty~)c of program fault, tllc functioI)al fault, in Inorc
c{ctai]. At tllc]CVC] of detail iIl ‘1’ab]c 2, c]ifl_crcnccs bctwccn t]lc s~)acccraft begin to appe”ar.
011 Voyager fully half the safety-related functional faults arc attributable to behavioral faults
(t}lc software behaving incorrectly). On Galileo, a slightly greater percentage is clue to
opcratiI)g faults (nearly always a required but omitted operation in the software) than to

bc]lavioral faults. often the 011’iitted ope ra t ion iIlvolves the fai]ure to pcrforln a d e q u a t e
rcasol)ablerlcss cllccks 011 data, iIl~)ut to a Inodulc. ‘1’his frcqucIltly results in an error-recovery
routine l)cing called inappropriately.

q’able 2 shows that conditions] faults (nearly always erroneous va]ucs 011 conditions or
limits) tend to bc safety-related on both spacccra,ft (73% total). EVCI1 though ac]justing

4

the values of lixnit variables clurillg tcstixlg is considcrcc] to bc fairly routine, tlIc case of
challgc obscur-cs the difficulty of clctcrminin.g the appropriate value and the safety-related
conscqucnccs of an inappropriate limit value.

l;rroncous values (e.g., of dcaclbalicls or clchy timers) often invo]vc risk to the spacecraft
by causing inappropriate trigger-ing of an error-rccovcry response or by failing to trigger
a nccdcd response. ‘J’hc associatioIl bctwccl) conditioIlal faults and safety-rclatccl software
errors cIIlpllasizcs the ilnportancc of specifying the c.orrcct values for any data usccl in control
decisions in safety-critical, cmbcddcd software,

‘J’hc analysis sulnmarizccl ill ‘J’able 1 also iclclltifics inicrjccc faults (incorrect, il~tcractions
with other systcm coInponcllts, SUC1l as t]lc tiI1ling or transfer of data or control) as a signif-
icant problcm (35Y0 of the safety-related pro~;ram faults on Voyager; 1970 on Galileo). Sect.
IV bclo]v dcscribcs l~ow the hig;l] illcidc)lcc of intcrfacc fdu]ts in tl)csc COIII])]CX, clnbccldcd
systclns contrasts with tllc low illciclcllcc of illtcrfacc faults in earlier studies on silnplcr,
standalone software.

C. Relationships Between

~’hc sccoIIcl step ill the cause/cfl”cct

l’rogram 1{’aults and ILoot Causes

allalysis is to trace Lac.kwarcls in tirnc to the }luman
fac to r s invo lved in tllc ~)rogram faults that, WCIC discc)vcrccl cluriIlg iIltcgratioII ancl systan
tcstill~. ‘J’ab]cs 3a aIld 3L summarize the Aationshil)s bctwccl] tllc major ty])cs of prograIn
faults a.nc] the kcy contributing causes.

l“or in~erjczce faulis, the lnajor hulnatl f a c t o r s arc cit}lcr comlnullicatioll errors \vitllill a
clevclol~lncllt tcaln or communicatiorl errors between a clcwcloprncnt team and other teams. III
tllc latter case, a further distinction is lnadc bct\vccll lllis~lllclcrstal~dillg hardware irlterfac.c
sl)ccifications ancl lllisLlllclclstal](lillg tl]c illtcrfacc spccificatiolls o f o the r so f tware colnpo-
ncnts.]“rom ‘1’able 3a it can bc seen that colnlnunication errors bctwccn dcvclopmcnt teams
(rather t]lan within tcalns) is tllc leading cause of intcrfacc faults (93% 011 Voyager, 72%
o]] Galileo). Safety-related intcrfacc faults arc a.ssociatcd ovcrwhchnillgly with comnlunica-
iio~~ errors bctwcc]~ a dcvcloprncllt team al)d otllcrs (often bctwccn software dcvclopcrs and
systems engineers), ratllcr tl)all with colnlnullication errors within a team.

Significant diffcrcnccs appear il] the distribution of fault causes bct]vccn safety-related
ancl)lon-safety-related inter-face faults. ‘J’hc pri]nary cause of safety-rclatccl intcrfczcc faults is
misundcrsiood hardware intc7facc sllccijjcai.io71s (G5~o 011 Voya.gcr; 48~o on Galileo). Rmrnplcs
arc faults caused by wrong assulnptio]ls about the initial state of relays or by uncxpcctcd
l)cartbcat timing patterns in a particular operating moclc. on the otllcr]lancl, tllc root causes
of I lon-safety-related intcrfacc fall]ts arc distributed lnorc evcII]y bctwccll Inisundcrstood
harclwarc spccificat,ions and misul~dcrstood software sl)ccificatiorls. ‘J’llc I)rofilc of safety -
rcla.tccl illtcrfac.c faul ts assc]llblccl ill ‘1’ab]c 3a clnl)]lasizcs tllc iInportal)cc of ullclcrstanding
the software as a set of cmbcclclccl colnpollcnts in a larger systcm.

‘J’hc primary cause of safety-related functional faults is errors in rccog7Lizing (undc7’sta7~d-
ing) tiLc rcquirc7nc7ds (~z% 011 Voyager, ’79% 011 (;alilco). On tllc otllcr lla]lcl, n o n - s a f e t y -
rc]atccl functiox]a,l faults arc lnorc oftcll callscd by errors in deploying- implclncnting- - the
rcquircxncnts.

More specifically, safety-related co71diiio71al faults (erroneous condition or limit values)
arc almost always caused Ly errors irl recognizing rcquimmcn.k. Safety-rclatcc] opcraiio7La/

5

fau]ts (usually the omission of a rcquirccl opcratioI]) ancl behavioral faults arc also causccl
by errors in rccogl)iziIlg rcquircIncIlts more oftml than by errors in deploying rcquircmcnts.
‘l’able 3b reflects dcficicIlcics in the docuIncIItcxl rcquirclnc)]ts as well as instanccx of unknown
(at tllc tilnc of rcquirclncmt,s spccificatio)]) but- ncccssary requircIncnts for the two spat.ccraft.
Sccticm V cxalnillcs how and to what cxtcIlt t]lc discovery of rcquircmcnts during testing
can Lc avoided in safety-critical, cmbcddcd systems.

III suInlnary, dificultics wit]] rccluircIncmts is tllc Iicy root cause of the safety-related
soft~varc errors wl]ich have persisted uIlti] iIltcgratioIi a)ld system testing. “J’llc tables poiIlt
to errors in understanding tile rcquircxncnts spccificatioIis for the software/systcn~ interfaces
as the major cause of safety-related iIltcrfacc faults. Similarly, errors ill rccogniziIlg the
rcquircmlcIlts is tllc Inajor root cause lcadillg to safctY-I-elated ful]ctional faults.

D. Relationships Between Root Causes and Process Flaws

111 traciIIE; backwards froln tllc prograIn faults to their sources, features of tllc SyStCIll-
dcvclopIncnt process call bc idcntificcl w]licll faci]itatc or cIIab]c the occurrcI1cc of errors,
1)isc.rcpal)cim Lctlvccn tllc clifficu]ty of l,llc proljlcIII aIld the Inealls used to solve i t Inay
lJcrInit]Iazardous software errors to occur [4].

‘J’hc tllircl step of the error aIlalysis tllcrcforc associates a pair of process flaws with cacll
])rogram fault [1 6]. ‘J’llc first c]cmcnt in the pair iclcnt, ifics a process flaw or inadequacy
in the control oj the system co~nplezity (c,g., recluircrncnts which arc not cliscovcrcd un t i l
systcm tcsti Ilg). ‘1’lle sccolld e]eIIlcnt of the r)air identifies an associated process flaw in tl)c
co7nnzu71icat.ion or dcvclop7nc7tt 7ncthods used (e.g., iIllprccisc or unsystcInatic spec i f i ca t ion
IIldl OCki).

‘J’llc two clcrncnts of tllc process-flaw pair are closely rclatccl. l“rcquclltly, as will be seeIl
iIl Sect. V, a solutioIl to onc flaw will provide a solutioI1 to t}lc related flaw. F’or cxarnplc, tllc
lack of staIldardization cvidcllccd by aIl ambiguous intcrfacc spcciflcatioIl (an inadequacy in
tllc control of systc)n complex i ty) and tl~c gal) iIl iIltcIteaIIl comInuIlicatioIl cviclcnccd by a
Il~isuIldcrstood illtcrfacc specification (an illadequac.y in tllc coIIlrIl~lIlica.tioxl IIlethocls used)
might both bc addressed by tllc project-wide adoptioIl of the saInc CASE tool.

‘l’able 4a summarizes the rclatiorlsllips bct}vccn]) IOCCSS flaws ant] the most common causes
of i]ltcrfacc faults (I~lisu IldcrstaIlcli])g software iIltcrfacc specifications and IIlisLIIlc]crstalldi Ilg
IIardwarc iIltcrfacc spccificatio]ls). ‘J’hc riglltIIlost COIUII)IIS p r o v i d e iIlforInatioIl about tllc
safety-rclatccl iIltcrfacc faults.

I{’or s a fe ty - re la ted i?ltcrjacc faults, tllc Inost coImnoII com~)lexity-control flaw is i7~ter-
faccs 710i adcguatcly idc7Ltificd or uudc7stood (54% 011 Voyager; 87% on Galileo). “J’hc ~nost
coIIIInon safety-related flaw iIl tllc col II Irlu IlicatioIl or dcvcloprncnt Incthods used 011 Voyager
i s }~ardwarc hchavior not docunlc7Licd (46%). 011 Gali]co t}lc Inost COImIIOIi s a f e t y - r e l a t e d
flaws arc lack oj communica t i on bctu~cc71 llal’dware and sojlu]arc tcaTns (35%) and intcrjace
spccificaiio71s knoum but not doculncllted 01” c o m m u n i c a t e d (35Yo).

A 710nta/ous }Lardu~a7’c behavior is a, Inorc significaI]t factor in safety-rc]atcc] thaIl in non-
safety-rclatccl interface faults.]t is often associated wit}l interface design during systcrn
tcstiIlg, aIlotllcr inc]ication of a unstab]c software ~)roduct.

‘J’llcI-c arc significant, variations in the process flaws that cause errors bctwccn the two
s!)accc,ra.ft.]Iltcrfacc dcsigyl d~lrillg tcstillg is illvo]vcd ill a] IIlost onc-fif~h of t}lc safety-critical

6

iIltcrfacc faults on Voya~;cr, but iIl I1OIIC of tlIcm on Ga]ilco. ‘1’his is lmcausc on Voyager a set
of related hardware problems gcncratccl IIcarly }Ialf the safety-rclatecl intcrfacc faults. On
tlic other hand, tllc problcln of intc.rfac.c spccitic.ations that arc known but not doculncntcd
is II Iorc common on Galileo. ‘J’l)is is pcrllal)s duc tc) tllc incrcascd conlplcxi~y of the Galileo
iIltcrfaccs.

‘J’able 4b suInInarizcs the rclatioIlsllips bctwccn process flaws and tllc lnajor root causes
of fuIlctioIlal faults (rccogllizillg ancl dcployit]g lc:clllircIIlcrlts).

l“or functional faults , rcquirclnc]lts not idc!ltificd and rccluircIncnts not ulldcrstoocl arc
tllc lnost coIIIInoIl com])lcxity-control flaws. Safety-related functional faults arc more likely
tllall Ilon-safety-rc]ated functional faults to bc caused by rcguimmcnis which have ?lOi bCC72
idcnt.ificd.

Wit}l regard to flaws in the coInlnunicatioll or dcwclopIncIIt methods, missing 7cgui7v-
mcnis arc involved in nearly half (4’2Yo) the safety-rclatcc{ errors that iI~volvc recognizing
rcquirclncnts. I n a d e q u a t e dcsig?l is tllc Inost coImnon flaw leading to errors ill dcployiIlg
rcquirelncl]ts on Voyager. 011 Galileo, iILco7nplcic document.ation oj rcquircmcnts is as iln-
])ortarlt a factor for safety- related errors, but Ilot for non-safety-related errors.

IIllprecisc or u71sYstc7natic spcciJcatio7ts arc twice as likely to bc associated with safety -
rclatcd fuIlctioIlal faults as with noI1-safety-rclatccl functional faults. SiInilarly, unknown,
u71docu7ncntcd, or wrong rcquircmcnis arc a greater cause of safety-rc]atcc] t]la Il of Ilon-
safety-related crrom.

‘1’hcsc rcsu]ts suggest that the sources of safety-related software errors lic farther back in
tl]c software dcvclo]IIIIcIIt process- iIl iIladcquatc rccluircIncIlts- wllcrcas t}lc sources of nOll-
safety-rcla.tcd errors Inorc COIIIInOIIly i]lvolvc inadequacies in the clcsig]l phase.

IV. Comparison of Results with Previous Work

Although software errors aI1d their causes have Lccn stuclicd cxtcnsivcly, the current work
differs from most of tllc]jrior investigations in tllc four following ways:
1) ‘J’hc software C11OSCI1 to analyze ill most studies is Ilot cn)bccldcd iIl a complex systcm as
it is IIcrc, ‘1’}Ic conscqucncc is that the role of iI]tcrfacc s])ccifications in coIltrolling software
hazards has been undcrcstiInatccl.
2) Un]ikc the current paper, most studies have allalyzcd fairly siIIlp]c systcIns ill familiar
and well-understood application domains. Consequently, fcw software errors have occurrccl
duriIlg systcxn testing in most studies, lcacling to a ?;ap ill kI]ow]cdgc regarding the sources
of tllcsc Inorc-persistent and often more hazardous errors.
3) hlost stuclics assume that the rcquircmcnts specification is correct. 011 the s])acccraft,
as irl Inany large, complex systems, tl]c rccluircIncIlts evolve as knowlcc]gc of the systc]n’s
Lc}lavior ancl the problcm domain evolve, SiIni]arly, Inost studies assume that rcquircrncnts
arc fixed by t}lc tiInc that systcIns testing begins. ‘1’his leads to a unclcrcstinlatioIl of the
ilIl])act of unknow?) rcquircIncIlts 011 tllc scope al]d scllcdulc of tllc later stages of the software
dcvcloplncnt process.
4) ‘1’lIc clistiI~ction between causes of safety-critical and non-safety-critical software errors ha-s
not Lecn adequately investigated. ltfforts to cnhal]cc systcm safety by specifically targeting
the causes of safety-related errors, as distinguished from tl}c causes of all errors, call take

7

advanta.gc of the distinct error mcc}]ar}islnsj as dcscribcd ill Sect. 5.
A Lricf descript ion of tllc SCOIJC and rcsu]ts of soInc rclatccl work is givcIl below and

coInparccl with the results prcscntcd’ in this paper for safct y-critical, cInLcddcd conl~)utcr
Systcll”ls.

Nakajo anti l{umc categorized 670 errors fouIld during the software dcvclopmcllt of two
firlnwarc products for controlling Incasuring il)strunlcllts and two software ~)roclucts for ill-
strumcnt mcasurcmcnt programs []6]. over !ilOYO of t]lc errors were either iIltcrfacc or fullc-
tiollal faults, siInilar to t}lc rcsu]ts reported]Icrc.

Unlike tllc results dcscribccl here, Nakajo ancl Kumc found nlaIly conditional faults. lt
may be that unit testing, as on the spat.ccraft, finc]s many of the conditional faults prior
tO SyStC!Ill tCStiIlg. Wllilc the licy human error on tllc spacecraft involved colIII1-l[lllicatioll
Lctwccn teams, tllc kcy llumat] error iI~ tllcir study illvolvccl conlmunicatioIl within a clcvcl-
O] JIIICI1 t team. IIoth studies iclcI~tificd coInplcxity aIlcl cloc~lI1-lcI~tatioIl dcflcicI]cics as issues.
IIowcvcr, the softwa.rc errors 011 tllc spacecraft tclldcd to invo]vc illllcrcnt technical colnplcx-
ity, wl)ilc tllc errors iclcntifrcd in tllc earlier study irlvolvcd cc)mplcx coIIcs~~oII(lcI Iccs bctwccn
rccluirclncnts ancl their iIll])lcIIlcIlt atioI1.

i’inally, the kcy process flaw tl)at they idcr]tificcl was a lack of II)cthods to record liI]o\vI)
i]ltcrfac.cs aIld clcscribc known fuIlc.tio Ils. in tl]c safety-critical, cnlhcddccl software on the
s~)acccraft, the flaw was more oftcIl a fai]urc to idcIltify or to uIldcrsta Ild tllc IcquircInclJts<

ostrand anti Wcyukcr categorized 173 errors found c]uring tllc dcvcloprncnt aIlcl tcstiIlg
of an editor systcm [19]. OIlly 2$Z0 of tllc errors ~vcrc fou]ld cluri Ilg systcm testing, reflecting
tl]c si]nplicity and stability of the i]ltcrfaccs and rcquircmcnts. hflost of tllc errors (G]%)
were fou]~d instead duri Ilg furlctioIl testing, Over IIalf tllcsc errors were caused by oInissiolls,
collfirslliIlg the findings of the prcscIlt stlldy t]lat oIIlissioIls arc a Inajor cause of software
errors.

Schncidcwind and]Iofl”rnann [21] categorized 173 errors founcl duriIlg the dcvcloprncrlt, of
four sInall programs by a siIlglc prograInnlcr. Again, tllcrc were I1O sigrlificarlt iIltcrfaccs with
llardwarc and little systcm
clerical, was design errors.
ncglcctcd, forgotten cases
faults orl the spacecraft.

testing. ‘J’hc most frcc]ucIlt class of errors, other than cocling and
All three of the nlost colnrllon dcsigIl errors- cxtrcmc conditions
or steps, and loop corltrol crrors- arc also coInrnon fuIlctioIlal

]]oth the findings prcscntcd irl [] 9, ?]] ant] in this pa])m coIlf_irln the cornlnon cx~)cricncc
that early insertion and late discovery of software errors maximizes tlIc time and cf[ort that
the correction takes. l’;rrors i]]scrtcd irl tllc rcquircIncnts and dcsigIl phases take longer to
find aIld correct than those inserted in later ~)llascs (bccausc tllcy tcllcl to illvolvc COIIII)lCX
software structures).]’;rrors discovered ir] tllc tcsti Ilg pl]asc take longer to correct (bccausc
tllcy tcrlcl to bc Inorc corn])licatcd arlcl difl~cult to isolate). ‘1’llis is cor]sistcllt with tllc rcsu]ts
ill [1 8] iriclicati Ilg that]norc scvcrc errors take longer to discover Lllarl ICSS severe errors
during systcIn-level testing. l“urtllcrvnorc, this cfl’cct was found to be more pr-onounccd in
more coIr~plcx (as measured by lines of code) software.

‘1’hc work done by]tndrcs is a direct forcrullrlcr of Nakajo aI1d KLIIIIC’S in that Erldrcs
backtracked from the error tyl)c to tllc technical and orgaIlizatioI1al causes wllicll]cd to each
tyJ)c of error [4]. Moreover, bccausc hc studiccl the systcml tcstillg of an ol)cratirlg systcIIl, tllc
softwa~c’s illtcractjon wit]] the llardwarc was a sollrcc of coIlccrI1. l~;Ildrcs Iloted the difficulty

of prcciscly specifying fuIlctioIla] dcnlaIlds orl the systcIIls before t]lc prograt-rlmcr had seen

8

their effect on the dynamic behavior of tllc systcm.]lis coIlclusioI) tl]at l~cttcr tools were
IIccxlccl to attack this prob]cm still holds true cightccll years after hc puhlisllcc{ his stucly.

Of the 432 errors that l~ndrcs analyzed, 46~o WCIC CrIOrS iI~ ~ll~dcrstal~diIlg or colI”lmLIIli-
cating the problcIn, or ill tllc choice of a solutiol], 38$K0 were errors iIl iIn~JlclIlcIlting a solutioIl,
ant] tllc rclnaining 1670 were cocling errors. ‘J’hcsc rcsu]ts arc consistent with the fincling lIcrc
that software with Inany systc]n interfaces dis~)lays a higher pcrccrltagc of software errors
involving understanding rcquirclnc]lts or t]lc systc:n ilnplications of altcr]lativc solutions.

Eckharclt ct al., in a stucly of software rcduIldaIlcy, aIlaly~Cd tllc errors iIl twcIl~Y illdc-
l)cnclcnt versions of a software coml)oncIlt of an inertial navigatio]l systcIn [3]. IIc found that
iIladcquatc uIldcrstaIldi Ilg of tllc s})ccifications or tllc unde r ly ing coorcli))atc systcIn was a
Inajor coI)trit~utor to the program faults causil)g coillciclcnt failures.

Adcly, looking at the ty~)cs of errors that causccl safety])1-01.)lcIIM ill a Iargc, r ea l - t ime
coIltrol systcI”n, c o n c l u d e d t h a t tl)c clcsign coInl)lcxity in}lcrcnt in SUCII a systcm rccluircs
IIiddcll iIltcrfaccs wllic.11 allow crIors ill I)oI1-critical software to afl’cct safety-c.ritical software
[1]. ‘1’his is consistc,)t with Sclby a,,cl IIasili’s rcsu]ts WIICI1 they analyzed 770 software errors
during tllc upclati Ilg of a library tool [22]. Of the 46 errors documented ill trouble reports,
70% were categorized as ‘[wrong” aIld 2870 as “missing. “ ‘J’llcy fouIld tl~at subsystclIls t h a t
~~rcl.c]lif,l]ly iIlt,c~ac,tivc Wit}l Ot]lcr subsystcnls llacl proportioIlatcly m o r e C~Iors t}la Il l e s s

intcrac. tivc subsystems.
],CVCSOI1 listed a set of coImnc)II assumptioIls that arc oftcIl false fOr coIltI”ol systcIns,

resulting in software errors [1 1]. AInoIlg these assumptions arc that the software sl)ccification
is correct, that it is possible to ~Jrcclict realistically tllc software’s execution cnvirollmcIlt
(e.g., tllc cxistcncc of transients), and that it is possil)lc to arltic.ipatc aIlcl s~)ccify correctly
tllc software’s behavior unc]cr all possible circulnstaI)cc!s. ‘J’lIcsc a s sumpt ions tcncl to bc
true for tllc silnplc systems iIl wllicll software errors]lavc lJCCII arlalyzccl to date ancl false for
spacecraft and other large, safety-critical, cmbccldccl systems. g’bus, while studies of software
errors ill silnp]c systcl Ils earl assist iIl unc{crstancli Ilg internal errors or sOIIlc fuIlctioIlal errors,
tllcy arc of ICSS }Iclp in uI~dcrstandiIlg the causes of safety-related software errors, which tcncl
heavily to involve interfaces or rccogIlitioIl of COII-I1)lCX rcquirc]Ilcnts.

SiIIlilarly, statldard]neasurcs of t]lc iIltcrnal coInplcxity of II1OC1U1CS have limited usefulness
iIl anticipating Software errors duri I1g Systcm testing]t is not tllc iIltcITlal COIIlplCXity of a
moclu]e but the complexity of the :nodulc’s coIlncction to its cnviroIlmcIlt that yields the
pcrsistcl]t, safety-rclatccl errors SCCII in the clnbcddcd systems here [8].

V. Conclusion

A.]kcommendations

‘J’IIc results in Sect. 111 indicate that safety-rclatccl software errors tent] to bc procluccd by
clifl’crcIlt error InccllanisIns than Iloxl-safety-rc]atccl software errors. ‘J’his mcaIls that systcm

safety caIl h directly cnhallccc] by targcti Ilg the causes of safety-rclatccl errors. Specifically,
the following six rccomnlcIldatioIls cmcrgc from our analysis of safety-related errors ill com-
~)lcx, cnlbcc]dccl systems.

9

1 . }’OCUS o n t h e intcrjaces bcfwccn the sojtwarc and the sysicm in analyziltg the Ivohlc171
dolnain, since these inlcrjaces arc a major source oj s a j c ty - r e l a t ed sojtwarc CIV’01’S.

‘J’lIc trac]itional goal of tllc rcquirclncvlk aIlalysis pl]asc is tllc spcc.ificatioI] of tllc sofL
ware’s external inkrfacc to tllc user . ‘1’}]is definition is inaclcquatc when the software is
deeply cInbcddcd in larger systc Ins SUCI1 as spacecraft, advancccl aircraft, air-traffic control
units, or manufacturing process-control facilities. in such systems, tlIc software is often
physically and logically distributed among various hardware colnJJollcIlts of tlIc systcm. ‘1’llc
llardwarc iIlvolvcd may be not only comJjutcrs but also scllsors, actuators, gyros, aIlcl scicIlcc
instrulncnts [9].

S~Jccifying the cxtcrna] behavior of tllc software (its transforII]ation of software iIlputs
into software outputs) only makes SCIISC if tllc illtcrfaccs between tllc systcIn inputs (e.g.,
cl)viroIlmcntal conditions, power transicIlts) and the software iIlputs (e.g., IIlonitor ciata)
arc also sl~ccificcl. SiInilarly, sl)ccifyillg tllc i]ltcrfaccs- especially tllc timing aIld dcl)cIIdcIlcy
rc.latioIlships- Lctwccn the software outl)ut,s (e. g., star idcntificatiol]) aIlcl systcIIl o u t p u t s
(c,/;., closing the shutter on the star scanner) is Ilcccssary. [5, 10]

SystcIn- dcvclopIncnt issues such as tiIni Ilg (rca]-tirnc activities, intcrru~)t llanclli Ilg, frc-
clucncy of sensor data.), hardware capabi]itics aIld liInitatiolls (storage capacity, power tran -
sicllts, lloisc characterist ics) , coIIl]~l~lIlic.atioll liIil<s (l~ufl’cr and interface forInats), and the
cxpcctccl operating cnvironmcIlt (tcmpcraturc, prcssu rc, racliatioIl) ncccl to Lc rcflcctccl i n
the software rccluircIncnts spcc.ifica.tions bccausc they arc frcclucntly sources of safety-critical
software interface errors.

‘1’imillg is a particularly clifl”icu]t source of safety-related software i)ltcrfacc faults since
tiIIling issues arc so oftcIl illtcgral to tllc fuIlctioIlal corrcctIlcss of safety-cri t ical , clnbcd-
(led systcIns. !l’iIni Ilg dcpcndcIlcics (c.F;., IIow loIlg ill~)ut clata is valicl f o r Inakil]g coIltrol
clccisions) SIIOUICI be included in tllc software intmfacc spccificatiolls. AIlalytical II~oclcls or
siInulatitiIls to uIldcrstaIld systcIn interfaces arc particularly useful for corn~)lcx, CInt~CddCd
Systcl]]s.

2?. Idc7Ltijy sa~cty-crit ical hazards early i7L ihc 7zqui7cmc7Lts analysis .

‘] ’hcsc hazards are constraints on the possible dcsiglls ancl factors in any contcmp]atcd
trac~coffs bctwccrl safety (whic]l tcncis to cIlcouragc software siInp]icity) aIlci iIlcrcascd fullc-
tionality (which tends to cIlcouragc software colnplcxity) [10, 22]. hlalny of t}}c safety-related
software errors reported in Sect. 111 involve data objects or proccsscs that WOUIC1 be targeted
for special attention using hazard-detection l,cchniqucs such as those clcscribcd in [7, 11].
ltarly detection of these safety-critical objects ancl incrcasccl attention to software opera-
tions involviIlg thcIn Inigllt. forestal] safety-related software errors involving tllc]n.

3. [Jse jovrnal specification techniques in cLddition to naiural- language sojtwarc r equ i r ement s
spccificatio7w.

l,ack of precision and illcoIn~)lctc Icquircn]cl] ts lCC1 to mall y of tllc safct y-rclatccl software
errors seen here. Rnough detail is Ilccdcd to cover all circulnstanccs that can bc cnvisionccl
(coInponeIlt failures, tin]i]~~; coI~straiIlt violatioI~s, expired data) as WC1l as to clocumcnt all
cnvironmcnta] assumptions (e.g., how CIOSC to tllc sun an iIlstrulncnt will point) and as-
suInptioIls about other parts of tllc systc]n (InaxixnuIIl transfer rate, conscclucnccs of race

conditions or cycle slippage). I’hc capability to clcscribc dyIlanlic cvcIlts, the tiIning of pro-

10

ccss iIltcractioIls in distinct Co]nputcrs, dcceIltralizcd su~)crvisory functioIls, e tc . , should bc
c.onsidcred in chooosing; af orma] IIIctlIod [2,4, 5, 1 5 , 2 0 , 2 3] .

~. l'l`07~loic illjoT`lllol coltllJIT1llica iioTlalrlollg ica77ls.

hlal)y safety-rc]atcd software errors rcsultccl fmIn onc individual or tcaIn Inisunclcrstand-
iIIF; a rcquircnlcIlt or not kIlo\ving a fact about tlIe systcm that lncmbcr(s) of another clcvcl-
oj)Irlcnt tcaIn knew. ‘1’hc goal is to bc able to modularize rcsponsibi]ity in a dcvclopnlcIlt
I)rojcct w i t h o u t Inodularizirlg conlmullication al)out t h e systcm urldcr dcvclo~)Incnt. ~’llc
idcntifica.tion and tracki I)g of safety]Iazards in a systcl Il, for cxaInplc, is clearly Lest done
across tca.m bounclarics.

5. As rcqui7mncnts evolve , communicate the chaugcs io the development and test i.cams.
‘1’}lis is both moxc iInl)ortaIlt (bccausc tllcrc arc IIIOrC rcquircmcnts c]la]lg;cs during design

and testing) and Inorc difllcu]t (bccallsc of tile IIumbcr and size of tllc tcaIm and the length of
tllc dcvcloprncnt ~)roccss) in a Iargc, cmbccldcd systcIn t}lan in sinlr)lcr systc]ns. in aIlalyzing
tllc safety-r-elated software errors, i t is cvidcIlt that the determination as to who IIccds to
kI\ow about a change is oftc]~ lnadc il~corrcctly. l’rcqucntly, changes that appear to il~volvc
oIIly OIIe tcanl or systcm corI~poIlcI)t CIIC1 u]) affccti Ilg other teams or components at soInc
later elate (soIIlctilncs as the rcsu]t of illcoInIJatiblc clIaIIgc5 iIl distinct ul]its).

‘1’l]crc is also a need for faster distribution} of c}langcs that have Lccn Inaclc, with the
upclatc s tored so as to bc fiIlgcrtip a.cccssib]c. ~ASl; tools offer a possible solution to the
clif[icu]ty of prolnulgating c.llangc without il~crcasillg pa~)crwork.

‘1’hc ~)rcvalcnce of safety-rc]atccl software errors involving misunderstood or missing rc-
quirwlncvlts ~)oiIIts up tllc inadequacy of c.olisistcnc.y cllec.ks of rcquirclnc]~t,s and code as a
]rlcans of dcInonstrati Ilg systcm correctness [1 O]. coclc that implements incorrect rccluirc-
IllCIltS is iIlcorrcct if it fails to provide IIccdcd systcln be}lavior.

SiInihwly, generating test c.ascs from Inisundcrstood or missing rcquircmcnts will not test
systmn correctness. ‘.l’raccabi]ity of rccluircmm]ts and autoInatic test generation froIn spccifi-
catio:ls oflcrs oIlly partial validation) of cornl)lcx, crnhedc]ccl systcIns. Alternative valid atiorl
aIld tcsti Ilg Incthods SUC1l as those dcscribcd iIl [9, 11] offer greater covcragc.

G. lncludc requirements for “dcjcnsivc design” [1 T].
h4aI)y of t]lc safety-rc]ated software errors involve iI)adccluatc software rcs~~onscs to cx-

trclnc conditions or cxtrclnc values. Anorna]ous hardware behavior, uIlanticipatcd states,
events out of order, aIld obsolete c{ata arc all causes of safety-related software errors on the
s~>accc.raft.

1{.uIl-tiII)c safety checks on tllc valiclity of input data, watchdog tiIncrs, clclay tiIncrs, soft-
ware filters, softwaIc-i In~)osccl initialization collclitiotls, aclditioIlal cxccption liandliIIE; , aIld
asscrtioIl cllccki Ilg can bc USCC1 to colnbat tllc lnaIly safety-critical software errors involving
conditional and omission faults [1 1].]tcquircmerrts for error-llaIldliIlg, overflow protection,
signal saturation liInits, heartbeat and pulse frccluc]lcy, Inaxi Ir-runl event cluratioI1, and SYS-
tcI1l bcllavior uI)dcr uIIcxlJcctccl conditions call Lc aclclcd aI)cl traced into the design. Many
sa.fcty-related fuIlc.tiona] faults iIlvolvc error-recovery rollti Ilcs being invokccl inappropriatc]y
bccausc of erroneous liInit values or bacl data.

IIackward arlalysis froIn critical failures to possible causes offers onc check of how dc-

11

fcmsivc t,hc rcquircIncIlts and dcsi811 arc [1 2]. llcquircmcnts specifications that account for
womt-case sccllarios, Inoclcls that can ~jrcclict tllc raIlgc of possible (rather tl]arl allowal)lc)
values, aIld simulations that CaII discover uncxpcctcd interactions before systcIn tcstillg con-
tril>utc to tllc systcIn’s dcfalsc against hazards.

13. Summary and Future Work

III large, elnbcddccl systems SUC}I as the two sljacccraft in this stucly, the software
lnents C,llange throughout tlIc soft}varc clcwclopmcnt process, even during systcm

rcqui re-
testing,

‘1’lIis is largely due to unanticipatcxl behavior , dyl]a]nic changes in the operating cnviron-
Incn t, ancl coInplcx software/llardwarc and software/softwar-c interactions iIl the systems
bcillg dcvclopccl, controlliIlg rcquiImncIlt cllal]gcs (aIlcl, hcncc, tllc scope arid cost of clcvcl-
opxncnt) is difXcult since the changes arc often pronlpt,cd by an irnprovcd undcrstandiIlg of
tllc software’s Ilcccssary irltcrfaccs with tllc physical coInpoIlcIlts of tllc spacecraft in which
it is cmbcdclcd. CoInl)lcx timil]~; issues and hardware idiosyncrasies often proml)t changes
to rcquirclncnts or to cicsign solutions.

7’lIc aIlalysis prcwmtccl here of t,lIc cause/effect rclatioIlsllips of safety-rclatccl software
Crrors pill~)oints as~~ccts of systcm co]nplcxity wl]ich lncrit additional attcI)tioI1. Specifically,
t}lc results l)ave shown that conclitiona] faults (e.g., condition or lilnit values) are highly
corrclatccl with safety-related software errors. opcratil!g faults (especially the oInission of
run-time rcasoIlablcncss clIccks OII data) arc also })igllly correlated with safety-rclatccl soft-
ware errors. Unlmown, undocux ImIltcd, or crIoIlcous requircIncI]ts frequent] y arc associated
with safety-related software errors as well. }lardwarc/software iIltcrfaccs liavc bccI~ sllo~vn
to bc a frCcJuCIlt trouble spot bccausc of tjlc laCk of coIllIIlllIlica.tioIl betwccIl tcaIns,

‘J’llc results prcsc]lt,cc] in this paper inclicatc a IIeccl for better mct}locls to collfroIlt tllc
real-world issues of dcvclopiIlg safety-critical, cInheclclcd software in a coIIlplcx, distributed
systcIn. Future work will bc clircctcd at incorporating knowlcc]gc of the distiIlct error mech -
allisn~s that produce safety-related software errors illt.o tllc rcquircIneIlts analysis a.rld vali-
dation processes. Work is also Ilccdccl on specifying lIOW these results can bc used to predict
Inore prcciscly w}lat features or combinations of factors ill a safety-critical, embccldccl system
arc likely to cause time-consulnirlg; allcl hazardous soft~varc errors.

References
[1]

[2]

[3]

[4]

14;. A. Addy, “A Case Study on]solation of Safety-critical Software,” iII l’roc 6/h Annva/
~Ollj 0?1 COTTl~JUtCr ASSUIWNCC. NIST/llI)l;l;, 1991, ~)~). 75-83.

A . M . l)avis, Sojtumrc lkquilcmcltts, A ~laiysis and ,$pcci~catio?~. 14;nglewood ~lifl’s, N. J . :
l’rcnticc hall, IWO.

D. E. l;ckha,rdt,, et al., ‘(AI\ l(;xpcrimcntal lvaluation of Software Redundancy as a Strategy
for improving Reliability,”)~~~~~; ~’1’CLllS L$OjtUWC h~ ,] 7, 7, July 199], ~)p. 692--702.

A. li;Ildrcs, “An Analysis of l+;rrors ant] ‘J’l~cir Causes iIL Systems l’rograms,” IEI;L’ l’runs
S’ojtumre Eng, SII}-1, 2, June 1975, pp. 140-149.

12

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[J9]

[20]

[21]

[22]

[23]

II}. M. Gray and IL 11. Tl(aycr, “]{cquircIncnts, “ in A crospam Softwctrc ~hgillcering, A Collcc-
iion of Concepts. Nd. C. Anderson and M. l)orfInan. Washington: AIA A, 1991, pp. 8!+121.

AN S1/III;lI;lL Standard Glossary of Software l;IlgiltccriIlg ‘I’crIni Ilology. NcwT York: llI;I;II;, 1983.

L4. S. Jaffe d, al., “Software Requirements Analysis fcm Real-’J’inlc l)roccss-Colltrol Systems, ”
IJ;J;E 7’rans Soflumrc l;?ig, 17, 3, Malcll 1991, pp. 241-258.

1’. Jalotc, An lnlcgvntcd Approach to Software l;n~inccring. New York: Springer-Vcrlag, 1991.

J . ~. Knight, “rJ’cstiIlg, “ in A c? ’ospcc Softw(lrc l;ngincc7ing, A ~ollectio?l of ~oTLccpts.]4’KI.
~. Al\dcrsolI and M. l)orfman. WashiIigton: Al AA, 19!31, J)l). 135-159.

N. G. l,CVCSOII, “Safety,” in A crospace Sojtmrc J;?lginceri?lg, A collection oj Concept.s. lIkl.
C. Anclcrson and M.])orfman. Washington: Al AA, 1991, p]). 319-336.

N. G. l,cvcson, “Software Safety in l;mhcdclcd ~oIn~)uter Systems,” L’ontInu71 A CM, Vol. 34,
No, 2,]rCb 1991, pp. 35-46.

N. G.),cveson and 1’. R. llarvey, “AnalyziIlg Software Safety,” l);};}; Y’runsu clion.s on Sojl wcirc
~hgim?cring, S](;-9, .5, Sept]983, pp. 569-579.

Karan 1,’lIcurcux, ‘(Software Systems Safety l’rog]a]n It’J’OI’, l’hasc A RcI)ort,” IIltcrnal
IJocumcllt, Jet l)ropulsion laboratory, A])ril 19, 1991.

R. l,utz, “Analyzing Software Rcquirc)nents F;rrors in Safety-Critical, l;mbeddcxl Systclns,”
l’roc II;l;l!! lnter71at SyInp o?) lkquiwments l;)~ginccring. I,OS Alamitos, CA: II;](;E Colnputcr
Society l’rcss, 1993, pp. 126-133.

IL],utz and J. S. K. Wong, “I)ctccti]lg U]lsafc l(;rror Recovery Schedules, ” IJJJY; T’m?is
Sojtwarc E7~g, 18, 8, Aug, 1992, pp. 749-760.

T. Nakajo and 11. Kumc, “A Case IIistory Analysis of Software l;rror Cause II;flcc.t Rcla.tion-
ships,” IL’J;L’ l’mns Sojtwarc l;ng 17, 8, Aug 1991, pp. 830-838.

1’. G, Neumann, “’i’hc Com])uter-Relatecl l{isk of the Year: Wcali I,inks a.]ld Correlated
l;veuts~’ in 1)7*oc 6th A n7wd CoIIj on Computer Assurance. NISrJ’/lNl;lI;, 1991, pp. 5-8.

A. 1’. Nikora, “l;rror l)iscovcry Rate by Severity Category and “J’imc to ltepair Software
1+’ailurcs for q’hrcc J] ’I, Flight l’rojccts,” I]ltcrnal l)ocumcnt, Jet Pro]) ulsion l abora to ry ,
1991.

‘l’. J. Ostrancl and E. J. Wcyuker, “Collecting and Categorizing Software l+h-ror l)ata in an
industrial]tnvironment, ” 7’hc Jour7wl oj Systems and Sojtwarc, 4, 1984, pp. 289-300.

}’roe IJerkeky Workshop 011 l’entl)oral atid Real- ?’imc Spcci~catio71. Eds. 1’.11. l,adkin and l’.
11. Vogt. IIcrkclcy, CA: IILtcrnational Col]]putm Scicllce]nstitutc, 1990, 1’lL-90-060.

N. F. Schncidcwind and 11.-M. IIoff’]na.nn, “AIL lhpcrilnent in Software Error l)ata Co]lcction
and Analysis,” lEJ;E TrriTM Sojtware J;ng, SE-5, 3, May 1979, pp. 276-286.

IL.. W. Sclby and V. R. IIasili, “A1ialyT,ing l+;rror-]’rone System Structure,” ll;l~E 2’TUIIS Soft-
ware Eng 17, 2, Febr 1991, pp. 141-152.

J. M. Wing, “A Spccificr’s introduction to l’ormal Methods,” Computer, Vol. 23, Scpt 1990,
pp. 8--26.

13

Index Terms
Software m-ors, software safety, rcquimnents analysis, c]nbedclecl software, system testing, software
specification, safety-critical systems, spacecraft.

14

Appendix

‘1’ab]c 1. Classification of Program Faults

l~ault ‘1’ypcs: Voyager
(134)

1..-..

. —...

lntcrnal Faults 1% (1)

lntcrface Faults 34% (46)

Functional Faults 65% (87)
- .— — ——- .

“l-able 2. Classification of Functional Faults
—— .-. —. .-—. -~—..——.

Galileo
(253)___ _____

3% (7)

18% (47)

79% (199)

Voyager Galileo
(74) (121)

‘ - - - - - T

. ,_
o% (o) 2<% (2)

35% (26) I 19% (23)

65% (48) 1 79% (96)

–, . .

-L- I;unctional Faults

. ..-...-1

Safety-Relateci
I:unctional Faults

—...—— —. . -—. .——. —. —.. -.— — . _

Functional Fault Types:

operating faults

Conditional Faults

Behavioral Faults

Voyager
(87)

Galileo
(1 99)

22% (19)

26% (23)

5296 (45)

43% (85)

10% (21)

47% (93)

Voyager
(48). .—— ——. .—

19% (9)

31% (15)

50% (24)

Galileo
(96) ——

43% (41)

18% (17)

40% (38)

“1’able 3a. Relationships Causing Intcrfacc Faults

1:

. . ..— - ——————.-

. J..

—

.1

———.-..——— ___ ..— —
lntcrface Faults Safety-Related

Interface, Faults
. ——..—— .—. —.. ..— — .- .—. —. —-——_. _______

Root Causes (IIuman Errors): .———
Communication Within Teams

Communication]lctwccn Teams:
h4isundcrstood 1 lardware
lntcrfacc Specifications

1Misunderstood Software
]ntcrface Specifications
— .—. — ———

Voyager
(46)

7% (3)

50% (23)

4370 (20)

“1’ab]c 3b. Relationships Causing I;unctional Faults

‘“-1--”-””------------”-

Galileo
(47). . ..— . ..—. .—

28% (13)

42% (20)

30% (14)

1 I:unetiona] l“au]ts
—. . . .— . ——-. . ——-— .—-— -—. —. ——. —...

Root Causes (1 luman Errors): Voyagc<r Galileo
(87) (199)—.. .

Voyager
(26)——.. -.—

8% (2)

65% (17)

2.7% (7)

Galileo
(23)

22% (5)

48% (11)

30% (7)
.. ——___ ___

—.

Safety-Ralated
I;unctional Faults

—— ___ ——— —.—
Voyager Galileo

(48) (96)——... —— ._ —_
Rcc]uiremcnt
Recognition

operating faults

Conditional faults

khavioral faults EF2%::s:’2E:::-

l’otal I 47% (41) / 62% (124) \ 62% (30) / 79% (76)

Requirement
Dcj)loymcnt

Operating faults

Conditional faults

Behavioral faults

Total
. — — _ _ ——- .

..-—

13% (11)..— ——— —...
9% (8)

————. ..— —— ..-
31% (27)

53% (46)
———.—-—. —. ‘=--”-::+- .._L-

_—— —.. ——— —- .—— —
18% (36) – 11% (5) - 9% (9)

—.. —
3% (5) 6% (;; ‘“” “-2% (2)

——- —- ..-... ——. — .—
17% (34) 21% (lo) 9% (9)..-.. —. — . ——
38% (75) 38% (18) “-”’ 21% (20)

—..—— ——. —— -

‘1’able 4a. Process Flaws Causin~ interface];au]ts—

_.. _ . .—., —- .. —-. —— .—

Process Flaws:—. —.. .—— —— _—

1. I;laws in Control of System
Compkxity:
1 -Intcrfaccs not adequately identified

or understood

2-1 lardwarc behavior anomalies
—

IIa, I;Jaws in Communication or
Development Methods Causing
Misundcrstooci Software lntcrfaccs:

l-Intcrfacc Specifications known but
not documented or communicated

2-lntcrface design during testing

IIb. I;laws in Communication or
Dcvclopmcnt Methods Causing
Misunderstood 1 lardware Interfaces:

1-Lack of communication between
hardware and software teams

2-1]ardware behavior not documented
. . ..— ..-— ——__ ——. -

-..7 -----------
—-.

Safety-Related
lntcrfacc l;aults Int.crfacc Faults

. . — “ .-—. —
Voya.gcr Galileo

(46) (47)
—— .— - .

‘--”----””1 ““-
_ .—

70% (32) 85% (40)

30% (14) I 15’% (7)
..— ___

20% (9) 38% (18)

26% (12) I 2% (1)
.—. .-

24% (11) 28V0 (13)

30% (14) ~ 32% (15)
.— ——

Voyager
(26). . _— —.. ..—.

54% (14)

46% (12)

8% (2)

19% (5)

27V0 (7)

46% (12)
—

Galileo
(23)

87% (20)

13% (3)
. —...——

3570 (8)

0% (0)
—————

I
3570 (8)

30% (7)

l’ab]c 4b. Process Flaws Causing Functional Faults

r

— — _ .—

1.

— . — _ — . _ , _ _ . . _ _

I

———— . .._— ___
Safety-Related

Functional Faults Functional Faults

Process Flaws:

._... _.. ——..——— —.. —-----
I. Flaws in Control of System

Complexity:
1-Requirements not identified:

unknown, undocumented, or wrong

2-Rcquirenmlts not understood
.—. —-

JIa. FJaws in Communication or
Development Methods, causing
errors in Recognizing
Requirements:

1-Specifications imprecise or
unsystematic

2-Rcquirenlents missing from
rcquircmcnts documents

-—. .
IIb. Flaws in Communication or

Development Methods, causing
errors in Deploying Requirements:

1-Incomplete documentation
of requirements or changes

2-Coding errors persisting until
system testing

3-I>csign inadequate to perform
required functions

—.

Voyager
(87)

37% (32)

63% (55)

I 6% (14)

31% (27)

6% (5)

18% (16)

29% (25)

Galileo
(199)—... .————

53% (105)

47% (94)
—.

28% (55)

35% (69)
—.—

10% (20)

9% (18)

19% (37)

Voyager
(48)_ . . . — _ _ _ _

44% (21)

56% (27)

2170 (10)

42% (20)

2% (1)

10% (5)

25% (12)
—.—. —

Galileo
(96)

60% (58)

40% (38)
—-.—_——

38% (36)

42% (40)

870 (8)

5% (5)

7 Yo (7)
——..—_

